Multi-agent neural business control system
نویسندگان
چکیده
Small to medium sized companies require a business control mechanism in order to monitor their modus operandi and analyse whether they are achieving their goals. A tool for the decision support process was developed based on a multi-agent system that incorporates a case-based reasoning system and automates the business control process. The case-based reasoning system automates the organization of cases and the retrieval stage by means of a Maximum Likelihood Hebbian Learning-based method, an extension of the Principal Component Analysis which groups similar cases 2 by automatically identifying clusters in a data set in an unsupervised mode. The multiagent system was tested with 22 small and medium sized companies in the textile sector located in the northwest of Spain during 29 months, and the results obtained have been
منابع مشابه
On the use of multi-agent systems for the monitoring of industrial systems
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences su...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملApproach to Organizing the Functioning of Smart Elements in the Multi-Agent “Smart House” System
A research was conducted to form an approach to the design and implementation of a multi-agent control system of smart elements for a “Smart house”. The system was built on the example of three intelligent robots. In the architecture of the system under development, the main part is the subject-independent multi-agent kernel, which includes the following basic components: direct access service,...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کاملAdaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion
In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 180 شماره
صفحات -
تاریخ انتشار 2010